If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (n2 + -3n) + (15 + -1n)(12 + -1n) = 18 Reorder the terms: (-3n + n2) + (15 + -1n)(12 + -1n) = 18 Remove parenthesis around (-3n + n2) -3n + n2 + (15 + -1n)(12 + -1n) = 18 Multiply (15 + -1n) * (12 + -1n) -3n + n2 + (15(12 + -1n) + -1n * (12 + -1n)) = 18 -3n + n2 + ((12 * 15 + -1n * 15) + -1n * (12 + -1n)) = 18 -3n + n2 + ((180 + -15n) + -1n * (12 + -1n)) = 18 -3n + n2 + (180 + -15n + (12 * -1n + -1n * -1n)) = 18 -3n + n2 + (180 + -15n + (-12n + 1n2)) = 18 Combine like terms: -15n + -12n = -27n -3n + n2 + (180 + -27n + 1n2) = 18 Reorder the terms: 180 + -3n + -27n + n2 + 1n2 = 18 Combine like terms: -3n + -27n = -30n 180 + -30n + n2 + 1n2 = 18 Combine like terms: n2 + 1n2 = 2n2 180 + -30n + 2n2 = 18 Solving 180 + -30n + 2n2 = 18 Solving for variable 'n'. Reorder the terms: 180 + -18 + -30n + 2n2 = 18 + -18 Combine like terms: 180 + -18 = 162 162 + -30n + 2n2 = 18 + -18 Combine like terms: 18 + -18 = 0 162 + -30n + 2n2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(81 + -15n + n2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(81 + -15n + n2)' equal to zero and attempt to solve: Simplifying 81 + -15n + n2 = 0 Solving 81 + -15n + n2 = 0 Begin completing the square. Move the constant term to the right: Add '-81' to each side of the equation. 81 + -15n + -81 + n2 = 0 + -81 Reorder the terms: 81 + -81 + -15n + n2 = 0 + -81 Combine like terms: 81 + -81 = 0 0 + -15n + n2 = 0 + -81 -15n + n2 = 0 + -81 Combine like terms: 0 + -81 = -81 -15n + n2 = -81 The n term is -15n. Take half its coefficient (-7.5). Square it (56.25) and add it to both sides. Add '56.25' to each side of the equation. -15n + 56.25 + n2 = -81 + 56.25 Reorder the terms: 56.25 + -15n + n2 = -81 + 56.25 Combine like terms: -81 + 56.25 = -24.75 56.25 + -15n + n2 = -24.75 Factor a perfect square on the left side: (n + -7.5)(n + -7.5) = -24.75 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 14-8x=78-36x | | 5x+14=103-8x | | -31-4x=11-10x | | -28-2x=7-7x | | 5x+49=9x-11 | | 64-4x=23x+19 | | 5(y+5)=20y | | 5-2y=3+y | | 3a+2=5a+6 | | 5+6=36y+20y | | 8t=5t+8 | | 2a+5=4a+2 | | 5a-1=3a+4 | | 8-10x=44-38x | | 5m=2m+1 | | 12x^2=29x-14 | | p(x)=-X^2+10x+25 | | 2x^2-4x+5=2 | | 3+12x=91+x | | 34y+34y=69 | | 4x+7=2-3x | | 4x+8=34 | | -4x^3+6x^2-5x-2= | | ln(x+1)-lnx+ln(x^2)=1 | | (6x^4+5x^3-4)-(7x^2-8x+6)= | | (2y^3+4y)-(-2y^3-5y+4)= | | -3(x-1)-6=0 | | 2(4a-3)-(2a+5)=10 | | (2z^7-6z^3+8)+(8z^6+2z^3-6z)= | | 11ab+3b^2-6ab+6b^2-13= | | x^6-8x^5+7x^6-8x^5+8= | | 4x+6=-30 |